Adinkras as Origami

Abstract

Around 20 years ago, physicists Michael Faux and Jim Gates invented Adinkras as a way to better understand Supersymmetry. These are biparte graphs whose vertices represent bosons and fermions, and whose edge present operators which relate the particles. Recently, Doran et al. dehibiting a Belyı̆ map as a composition $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$. We e interested in exhibiting the same Belyĭ map as a different composition $\beta: S \rightarrow E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$
Any opinions, findings, and conclusions or recommendations expressed this material are those of the authors, and do not necessarily reflect the views of the National Science Foundation.

Adinkras

Let $\mathbb{F}_{2}=\{0,1\}$ be the finite field of 2 elements. Fix an integer $n \geq 2$. Denote \mathbb{F}_{n}^{n} as the n-dimensional vector space over this field, where a vecto $v=\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ has components $v_{i} \in \mathbb{F}_{2}$
An Adinkra is a bipartite graph constructed as follows. Define ht: $\mathbb{F}_{2}^{n} \rightarrow \mathbb{Z}$ via counting the number of non zero components v_{i} of v. Choose a subspac "black" vertices $B=\mathrm{ht}^{-1}(2 \mathbb{Z}) / C$, "white" vertices $W=\mathrm{ht}^{-1}(2 \mathbb{Z}+1) / C$ and edges $E=\left\{(v, w) \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{n}: \operatorname{ht}(v-w)=1\right\} / C$. It has the following properties:

1. It is an n-regular, bipartite graph whose faces are rectangular.

There are $|B|+|W|=2^{n-m}$ vertices, $|F|=2^{n-m-2} \cdot n$ faces, and
2. $|E|=2^{n-m-1} \cdot n$ edges, where $|C|=2^{m}$
3. $|E|=|B|+|W|+|F|+(2 g-2)$ where $g=1+2^{n-m-3} \cdot(n-4)$

Examples of Adinkras
(2001

Figure 1. Adinkra corresponding to $n=4, C=\{0000\}$
1000

Figure 2. Adinkra corresponding to $n=4, C=\{0000,1111\}$

Example of a Belyĭ Map

For any positive integer n, consider the
$\widetilde{\beta}(z)=\frac{z^{n}}{z^{n}+1}$.
This is a $\widetilde{\beta}$ is a Bely̌ map of degree n. The corresponding Dessin d'Enfant has one "black" vertex $B=\{0\}$, one one "black" vertex $B=\{0\}$, one
"white" vertex $W=\{\infty\},|E|=n$ edges, and $|F|=n$ faces

Ramification Indices

Given a nonconstant map $\phi: S \rightarrow T$ between compact, connected Riemann surfaces S and T, the ramification index $e_{\phi}(P)$ at a point $P \in S$ is a natural number that effectively measures how much ϕ fails to be a covering map at P. We can describe the index by the following key properties,

The value $e_{\phi}(P)=1$ for all but only finitely many $P \in S$.
For every point $Q \in T$, the degree of the map $\phi: S \rightarrow T$ is

$$
\operatorname{deg}(\phi)=\sum_{P \in \phi^{-1}(Q)} e_{\phi}(P)
$$

Say $\beta=\eta \circ \phi$ for some nonconstant maps $\phi: S \rightarrow T$ and $\eta: T \rightarrow T^{\prime}$. Then we have the product $e_{\beta}(P)=e_{\phi}(P) e_{\eta}(\phi(P))$ for all points $P \in S$. we have the product $e_{\beta}(P)=e_{\phi}(P) e_{\eta}(\phi() \operatorname{lor}$ all point.
Additionally, we have the product $\operatorname{deg} \beta=(\operatorname{deg} \phi)(\operatorname{deg} \eta)$. 4. Denote the genera of S and T as $g(S)$ and $g(T)$, respectively. Then $2 g(S)-2=(\operatorname{deg} \phi)(2 g(T)-2)+\sum_{P \in S}\left(e_{\phi}(P)-1\right)$.
Assume $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ is a Belyı̆ map. The ramification indices $e_{\beta}(P)=$ whenever $q=\beta(P) \neq 0,1, \infty$. Whenever $P \in \beta^{-1}(\{0,1\})$, the indices $e_{B}(P)$ correspond to the number of edges incident to each vertex on the Dessin d'Enfant.

Examples of Adinkras as Belyì map

Consider $n=4$ and the subspace $C=\{0000\}$, which has dimension $m=0$ We form an Adinkra from the elliptic curve $E \cdot y^{2}=x^{3}-$

$\mathbb{P}^{1}(\mathbb{C})$

Belyĭ Maps and Dessins d'Enfants
every comped by a single polynomial

$$
f(x, y)=\sum_{i, j} a_{i j} x^{i} y^{j} .
$$

A Belyĭ map is a rational function $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ which has critical values $q \in\{0,1, \infty\}$, that is, $q=\beta(P)$ for some point $P=\left(x_{0}, y_{0}\right)$ which satisfies $f(P)=0 \quad$ and $\quad \frac{\partial \beta}{\partial x}(P) \frac{\partial f}{\partial y}(P)-\frac{\partial \beta}{\partial y}(P) \frac{\partial f}{\partial x}(P)=0$.
A Dessin d^{3} Enfant is a bipartite graph on S corresponding to the preimage of $[0,1] \subseteq \mathbb{P}^{1}(\mathbb{C})$ under a Belyı̆ map $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$. Some properties are: The "black" vertices correspond to $B=\beta^{-1}(0)$, "white" vertices to $W=\beta^{-1}(1)$, and faces to $F=\beta^{-1}(\infty$
The edges correspond to $E=\beta^{-1}([0,1])$. In fact, the number of edges is the degree of the Beyl map, namely $|E|=|B|$
where g is the genus of the Riemann surface S.

Adinkras as Dessins d'Enfant

Doran et al. [2] proved the following: For an integer $n \geq 2$, fix a primitive $2 n$th oot of unity ζ. Let $\sigma: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ be that Möbius transformation such hat $\sigma(\zeta)=0, \sigma\left(\zeta^{3}\right)=1$, and $\sigma\left(\zeta^{2 n-1}\right)=\infty$
The compact connected Riemann surface

$$
S=\left\{\begin{array}{l|l}
\left(x_{1}: x_{2}: \cdots: x_{n}\right) \in \mathbb{P}^{n-1}(\mathbb{C}) & \begin{array}{c}
\sigma\left(\zeta^{2 k-1}\right) x_{1}^{2}+x_{2}^{2}+x_{k+1}^{2}=0 \\
\text { for } k=2,3, \ldots, n-1
\end{array}
\end{array}\right\}
$$

has genus $g(S)=1+2^{n-3} \cdot(n-4)$.
There exists a Belyì map $\beta: S \rightarrow \mathbb{P}^{1}(\mathbb{C})$ which sends

$$
P=\left(x_{1}: \cdots: x_{n}\right) \quad \mapsto \quad z=\sigma^{-1}\left(-\frac{x_{2}^{2}}{x_{1}^{2}}\right) \quad \mapsto \quad \frac{z^{n}}{z^{n}+1} .
$$

Its Dessin d'Enfant has $|B|=2^{n-1}$ "black" vertices, $|W|=2^{n-1}$ "white" vertices, $|E|=2^{n-1} \cdot n$ edges, and $|F|=2^{n-2} \cdot n$ rectangular faces. Every Adinkra can be constructed using the Belyĭ pair (S, β).

PRiME 2023 Motivating Question

Doran et al. construct $\beta=\widetilde{\beta} \circ \varphi$, where $\widetilde{\beta}: \mathbb{P}^{1}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ describes the coloring of the edges" of the Adinkra. Can we also write $\beta=\eta \circ \phi$ where (C) describes the "rectangular" nature of the faces?

$$
\begin{array}{cc}
S \longrightarrow \varphi \\
\phi & \mathbb{P}^{1}(\mathbb{C}) \\
E(\mathbb{C}) \longrightarrow \mathbb{P}^{1}(\mathbb{C}) & P=\left(x_{1}: x_{2} \cdots: x_{n}\right) \longrightarrow z=\sigma^{-1}\left(-\frac{x_{2}^{2}}{x_{1}^{2}}\right) \\
\mathbb{T} & Q=(x, y) \longrightarrow q=\eta(Q)=\frac{z^{n}}{z^{n}+1}
\end{array}
$$

What can we say about $\eta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$? How do we find E ?

PRiME 2023 Theorem 1

Consider the Belyí pair (S, β) as in Doran et al
For integers r and s satisfying $1<r<s<n$, the quadric intersection $E(\mathbb{C})=\left\{\left(x_{1}: x_{2}: x_{r+1}: x_{s+1}\right) \in \mathbb{P}^{3}(\mathbb{C}) \left\lvert\, \begin{array}{l}\sigma\left(\zeta^{2 r-1}\right) x_{1}^{2}+x_{2}^{2}+x_{r+1}^{2}=0 \\ \sigma\left(\zeta^{2 s-1}\right) x_{1}^{2}+x_{2}^{2}+x_{s+1}^{2}=0\end{array}\right.\right\}$

is an elliptic curve which has j-invariant

$j(E)=256 \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}} \quad$ in terms of $\lambda=\frac{\sigma\left(\zeta^{2 r-1}\right)}{\sigma\left(\zeta^{2 r-1}\right)-\sigma\left(\zeta^{2 s-1}\right)}$ The Bely 1 map $\beta=\eta \circ \phi$ in terms of that Toroidal Bely̆ map η which sends $Q=(x, y)$ to $q=z^{n} /\left(z^{n}+1\right)$ in terms of

$$
z=\frac{\left(x^{2}-2 x+\lambda\right)^{2}-\zeta \tau\left(x^{2}-\lambda\right)^{2}}{\zeta\left(x^{2}-2 x+\lambda\right)^{2}-\tau\left(x^{2}-\lambda\right)^{2}} \quad \text { where } \quad \tau=\sin \frac{q \pi}{n} / \sin \frac{(q-1) \pi}{n}
$$

Origami

Let $E: y^{2}=x^{3}+A x+B$ be an elliptic curve; recall that $E(\mathbb{C}) \simeq \mathbb{T}^{2}(\mathbb{R})$ a rectangle. A nonconstant morphism $\phi: S \rightarrow E(\mathbb{C})$ whose branch points $Q \in\left\{O_{E}\right\}$ is said to be an origami. Its degree is the intege

$$
N=\sum_{P \in V} e_{\phi}(P)=|V|+(2 g(S)-2) \quad \text { where } \quad V=\phi^{-1}\left(O_{E}\right) \text {. }
$$

may tile S by N squares having a total of $2 N$ edges, where $P \in V$ are the ertices. For example, is $S=E^{\prime}(\mathbb{C})$ is another elliptic curve, then $e_{\phi}(P)=1$ that $\phi: E^{\prime} \rightarrow E$ is unbranched; this is an N-isogeny.

PRiME 2023 Theorem 2

Consider the Belyi pair (S, β) as in Doran et al. Assume that $\beta=\eta \circ \phi$ for some nonconstant maps $\eta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ and $\phi: S \rightarrow E(\mathbb{C})$
. η must be a Toroidal Belyĭ map.
ϕ cannot be an origami whenever $n \geq 6$.

Future Work

Adinkras are constructed from subspaces $C \subseteq \mathbb{F}_{2}^{n}$; they are quotients of the wercube. We know that they can be embedded on a compact, connected Riemann surface of genus $g(S)=1+2^{n-m-3} \cdot(n-4)$. Find explicit embeddings when $n \geq 5$.
The Belyı̆ map $\eta: E(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ in Theorem 1 has degree $\operatorname{deg} \eta=8 n$. Factor $\eta=\lambda \circ \gamma$ for (a) some $\gamma: E(\mathbb{C}) \rightarrow E^{\prime}(\mathbb{C})$ with $\operatorname{deg} \gamma=8$ and (b) some Toroidal Belyı̆ map $\lambda: E^{\prime}(\mathbb{C}) \rightarrow \mathbb{P}^{1}(\mathbb{C})$ of $\operatorname{deg} \lambda=n$ whose Dessin d'Enfant has exactly one "black" vertex and one "white" vertex.

Acknowledgements

National Science Foundation (DMS-2113782)
Pomona College Department of Mathematics and Statistics - Summer Undergraduate Research Program at Pomona (SURP) Alex Barrios (Univ. of St. Thomas), Luis David Garcia Puente (Colorado Mark Curiel (University of Hawaic at Māroa) Olivi Del Guercio (Rice University), Fabian Ramirez (UC Irvine), Japheth Varlack (Wake Forest) Other PRiME 2023 Participants

References

[^0]
[^0]:
 Charles Doran, Kev
 ,

 (4] Michael. Fuux and $\mathrm{S} . \mathrm{J}$. Cates. Adinkas: A graphical tedmology for supersymmetric representation theory
 deerfants, volume
 Cambirige, 2012 .
 English translation on ppp. 24 . 283

 8] Matile Marcolli and Nide Zolman. Adidikasas desins, origami, and supessymmetry spectral triples. p PAdic

 (0) Joseph H S. Siveman. Adaanced topicis in the arithmetic of elliptic curves, volume 151 of Graduate Terts

 And Ande Weil. The fied of definition of variety. Amer. J. Math. 78:509.524, 1966.
 ${ }^{133]}$ Yan X. Zhang. Adinhras for mathematicians. Trans. Amer. Math. Soc, $366(6)$)3225, 3355,201

