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Abstract

Around 20 years ago, physicists Michael Faux and Jim Gates invented
Adinkras as a way to better understand Supersymmetry. These are bipar-
tite graphs whose vertices represent bosons and fermions, and whose edges
represent operators which relate the particles. Recently, Doran et al. de-
termined that Adinkras are a type of Dessin d’Enfant by explicitly ex-
hibiting a Belyĭ map as a composition β : S → P1(C) → P1(C). We
are interested in exhibiting the same Belyĭ map as a different composition
β : S → E(C) → P1(C).
Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors, and do not necessarily reflect
the views of the National Science Foundation.

Adinkras

Let F2 = {0, 1} be the finite field of 2 elements. Fix an integer n ≥ 2.
Denote Fn2 as the n-dimensional vector space over this field, where a vector
v = (v1, v2, . . . , vn) has components vi ∈ F2.
An Adinkra is a bipartite graph constructed as follows. Define ht : Fn2 → Z
via counting the number of non zero components vi of v. Choose a subspace
C ⊆ ht−1(4Z); elements are called doubly even codes. Construct a graph with
“black” vertices B = ht−1(2Z)/C, “white” vertices W = ht−1(2Z + 1)/C,
and edges E = {(v, w) ∈ Fn2 × Fn2 : ht(v − w) = 1}/C. It has the following
properties:

1. It is an n-regular, bipartite graph whose faces are rectangular.
2. There are |B| + |W | = 2n−m vertices, |F | = 2n−m−2 · n faces, and

|E| = 2n−m−1 · n edges, where |C| = 2m.
3. |E| = |B| + |W | + |F | + (2g − 2) where g = 1 + 2n−m−3 · (n− 4).

Examples of Adinkras
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Figure 1. Adinkra corresponding to n = 4, C = {0000}
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Figure 2. Adinkra corresponding to n = 4, C = {0000, 1111}

Example of a Belyĭ Map

For any positive integer n, consider the
map β̃ : P1(C) → P1(C) given by

β̃(z) =
zn

zn + 1
.

This is a β̃ is a Belyĭ map of degree n.

The corresponding Dessin d’Enfant has
one “black” vertex B = {0}, one
“white” vertex W = {∞}, |E| = n
edges, and |F | = n faces.

Ramification Indices

Given a nonconstant map φ : S → T between compact, connected Riemann
surfaces S and T , the ramification index eφ(P ) at a point P ∈ S is a natural
number that effectively measures how much φ fails to be a covering map at P .
We can describe the index by the following key properties.

1. The value eφ(P ) = 1 for all but only finitely many P ∈ S.
2. For every point Q ∈ T , the degree of the map φ : S → T is

deg(φ) =
∑

P∈φ−1(Q)

eφ(P ).

3. Say β = η ◦ φ for some nonconstant maps φ : S → T and η : T → T ′. Then
we have the product eβ(P ) = eφ(P ) eη(φ(P )) for all points P ∈ S.
Additionally, we have the product deg β = (degφ) (deg η).

4. Denote the genera of S and T as g(S) and g(T ), respectively. Then

2 g(S)− 2 = (degφ)
(
2 g(T )− 2

)
+
∑
P∈S

(
eφ(P )− 1

)
.

5. Assume β : S → P1(C) is a Belyĭ map. The ramification indices eβ(P ) = 1

whenever q = β(P ) 6= 0, 1, ∞. Whenever P ∈ β−1({0, 1}), the indices
eβ(P ) correspond to the number of edges incident to each vertex on the
Dessin d’Enfant.

Examples of Adinkras as Belyĭ maps

Consider n = 4 and the subspace C = {0000}, which has dimension m = 0.
We form an Adinkra from the elliptic curve E : y2 = x3 − x.

S = E(C)
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Belyĭ Maps and Dessins d’Enfants

Every compact, connected Riemann surface S is a smooth curve, that is, can
be defined by a single polynomial

f (x, y) =
∑
i,j

aijx
iyj.

A Belyĭ map is a rational function β : S → P1(C) which has critical values
q ∈ {0, 1, ∞}, that is, q = β(P ) for some point P = (x0, y0) which satisfies

f (P ) = 0 and ∂β

∂x
(P )

∂f

∂y
(P )− ∂β

∂y
(P )

∂f

∂x
(P ) = 0.

A Dessin d’Enfant is a bipartite graph on S corresponding to the preimage of
[0, 1] ⊆ P1(C) under a Belyĭ map β : S → P1(C). Some properties are:

1. The “black” vertices correspond to B = β−1(0), “white” vertices to
W = β−1(1), and faces to F = β−1(∞).

2. The edges correspond to E = β−1([0, 1]). In fact, the number of edges is
the degree of the Belyĭ map, namely |E| = |B| + |W | + |F | + (2 g − 2),
where g is the genus of the Riemann surface S.

Adinkras as Dessins d’Enfant

Doran et al. [2] proved the following: For an integer n ≥ 2, fix a primitive 2nth
root of unity ζ . Let σ : P1(C) → P1(C) be that Möbius transformation such
that σ(ζ) = 0, σ(ζ3) = 1, and σ(ζ2n−1) = ∞.

1. The compact connected Riemann surface

S =

{
(x1 : x2 : · · · : xn) ∈ Pn−1(C)

∣∣∣∣∣ σ(ζ2k−1)x21 + x22 + x2k+1 = 0

for k = 2, 3, . . . , n− 1

}
has genus g(S) = 1 + 2n−3 · (n− 4).

2. There exists a Belyĭ map β : S → P1(C) which sends

P = (x1 : · · · : xn) 7→ z = σ−1

(
−
x22
x21

)
7→ zn

zn + 1
.

Its Dessin d’Enfant has |B| = 2n−1 “black” vertices, |W | = 2n−1 “white”
vertices, |E| = 2n−1 · n edges, and |F | = 2n−2 · n rectangular faces.

3. Every Adinkra can be constructed using the Belyĭ pair (S, β).

PRiME 2023 Motivating Question

Doran et al. construct β = β̃ ◦ ϕ, where β̃ : P1(C) → P1(C) describes the
“coloring of the edges” of the Adinkra. Can we also write β = η ◦ φ where
φ : S → E(C) describes the “rectangular” nature of the faces?
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What can we say about η : E(C) → P1(C)? How do we find E?

PRiME 2023 Theorem 1

Consider the Belyĭ pair (S, β) as in Doran et al.

1. For integers r and s satisfying 1 < r < s < n, the quadric intersection

E(C) =

{
(x1 : x2 : xr+1 : xs+1) ∈ P3(C)

∣∣∣∣∣σ(ζ2r−1)x21 + x22 + x2r+1 = 0

σ(ζ2s−1)x21 + x22 + x2s+1 = 0

}
is an elliptic curve which has j-invariant

j(E) = 256
(λ2 − λ + 1)3

λ2 (λ− 1)2
in terms of λ =

σ(ζ2r−1)

σ(ζ2r−1)− σ(ζ2s−1)
.

2. The Belyĭ map β = η ◦ φ in terms of that Toroidal Belyĭ map η which
sends Q = (x, y) to q = zn/(zn + 1) in terms of

z =
(x2 − 2x + λ)2 − ζ τ (x2 − λ)2

ζ (x2 − 2x + λ)2 − τ (x2 − λ)2
where τ = sin qπ

n

/
sin (q − 1)π

n
.

Origami

Let E : y2 = x3 + Ax + B be an elliptic curve; recall that E(C) ' T2(R)
is a rectangle. A nonconstant morphism φ : S → E(C) whose branch points
Q ∈ {OE} is said to be an origami. Its degree is the integer

N =
∑
P∈V

eφ(P ) = |V | +
(
2 g(S)− 2

)
where V = φ−1(OE).

We may tile S by N squares having a total of 2N edges, where P ∈ V are the
vertices. For example, is S = E′(C) is another elliptic curve, then eφ(P ) = 1

so that φ : E′ → E is unbranched; this is an N -isogeny.

PRiME 2023 Theorem 2

Consider the Belyĭ pair (S, β) as in Doran et al. Assume that β = η ◦ φ for
some nonconstant maps η : E(C) → P1(C) and φ : S → E(C).

1. η must be a Toroidal Belyĭ map.
2. φ cannot be an origami whenever n ≥ 6.

FutureWork

Adinkras are constructed from subspaces C ⊆ Fn2 ; they are quotients of the
hypercube. We know that they can be embedded on a compact, connected
Riemann surface of genus g(S) = 1 + 2n−m−3 · (n− 4). Find explicit
embeddings when n ≥ 5.
The Belyĭ map η : E(C) → P1(C) in Theorem 1 has degree deg η = 8n.
Factor η = λ ◦ γ for (a) some γ : E(C) → E′(C) with deg γ = 8 and (b)
some Toroidal Belyĭ map λ : E′(C) → P1(C) of degλ = n whose Dessin
d’Enfant has exactly one “black” vertex and one “white” vertex.
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